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We present a Bayesian mark–recapture method for explicitly communicating uncer-
tainty about the size of a closed population where capture probabilities vary across both
individuals and sampling occasions. Heterogeneity is modeled hierarchically using a con-
tinuous logistic-Normal model to specify the capture probabilities for both individuals that
are captured on at least one occasion and individuals that are never captured and so remain
undetected. Inference about how many undetected individuals to include in the model is
accomplished through a Bayesian model selection procedure using MCMC, applied to a
product space of possible models for different numbers of undetected individuals. Setting
the estimation problem in a fixed dimensional parameter space enables the model selection
procedure to be performed using the freely available WinBUGS software. The outcome of
inference is a full “posterior” probability distribution for the population size parameter. We
demonstrate this method through an example involving real mark–recapture data.

Key Words: Capture–recapture; Gibbs Sampling; Markov chain Monte Carlo; Rasch
model.

1. INTRODUCTION

Effective conservation and management of animal populations requires knowledge of
population size. However, a common problem in the study of natural populations is that not
all the animals are detected during surveys, and so complete enumeration of a population is
not possible. This has led to extensive development of methods for sampling populations,
and estimating population size from sample data using statistical models (Schwarz and Seber
1999; Buckland, Goudie, and Borchers 2000). Mark–recapture is a widely used method in
which samples of individuals are repeatedly captured from the target population, noting the
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presence and absence of individuals distinguished through artificial or natural markings.
The aim of the analysis is to estimate the number of individuals in the population that are
never captured, and thereby obtain an estimate of the population size N . Accurate estimation
of N requires models that adequately describe the major sources of variation in the capture
probabilities (Pollock, Nichols, Brownie, and Hines 1990).

A standard assumption of traditional mark–recapture analysis is that capture probabil-
ities are equal for all the animals in the population (Seber 1982). However, it has long been
recognized that behavioral differences among individuals are likely to produce variable
probabilities of capture, and failure to account for this heterogeneity can lead to negatively
biased population estimates (e.g., Carothers 1973a,b; Otis, Burnham, White, and Ander-
son 1978). Therefore, estimators that model individual variation in capture probabilities
are generally required. One approach is to use individual covariates to describe individual
heterogeneity (e.g., Huggins 1989; Alho 1990). However, relevant covariate information
may not always be available for all captured individuals, and is certainly not available for
uncaptured individuals. As an alternative, several models have now been developed that
are based on an assumed distributional form for the individual capture probabilities (e.g.,
Burnham and Overton 1978; Norris and Pollock 1996; Dorazio and Royle 2003), with some
also enabling heterogeneous capture probabilities to vary across sampling occasions (e.g.,
Chao, Lee, and Jeng 1992; Agresti 1994; Coull and Agresti 1999; Fienberg, Johnson, and
Junker 1999; Pledger 2000).

These distributional models can be categorized by the form they assume for the indi-
vidual detection probabilities. One category employs latent class or finite mixture models,
where heterogeneity is modeled as a finite mixture distribution, partitioned into two or more
classes with homogeneous capture probabilities (Agresti 1994; Norris and Pollock 1996;
Coull and Agresti 1999; Pledger 2000). These finite mixture models will be most appro-
priate for populations that contain homogeneous groups, each with its own probability of
capture. If such groups do not exist, then it may be best to assume a different probability
of capture for each individual (Dorazio and Royle 2003). Models of this type constitute a
second category that can be seen as a special case of the latent class finite-mixture models,
with as many classes in the population as there are individuals. Chao et al. (1992) proposed
using an approach based on sample coverage to estimate the number of classes (individuals)
from the mean and coefficient of variation of capture rates. An alternative approach specifies
individual variation in capture probabilities hierarchically using continuous distributions on
the latent detection probabilities, such as a beta distribution (Burnham and Overton 1978;
Dorazio and Royle 2003) or a Normal distribution on their logits (Coull and Agresti 1999;
Fienberg et al. 1999).

Modeling individual heterogeneity hierarchically using standard parametric distribu-
tions offers the practical advantage that the number of parameters needed to specify het-
erogeneity in individual rates of capture does not increase with N , thus helping to ensure
that model parameters are well identified (Dorazio and Royle 2003). However, estimation
of N under these models can be problematic. Specifically, substantial heterogeneity and
small probabilities of detection can make reaching useful conclusions difficult, due to large
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uncertainty associated with parameter estimates (e.g., Coull and Agresti 1999).
Conventional approaches for inference from mark–recapture models are not best suited

for analyzing and communicating uncertainty. These methods are typically oriented to find
a single optimum estimate, such as the maximum likelihood estimate, with statements of
uncertainty generally being derived from assumptions about large sample Normality (Buck-
land, Anderson, Burnham, and Laake 2000). Inference of this type is not best suited for
communicating uncertainty to both technical and nontechnical users of population data
(Wade 2000). What is therefore needed is a method for parameter estimation that allows
for more complete calculation and communication of uncertainty. We follow Fienberg et al.
(1999) in adopting a Bayesian method for estimating N when fitting a continuous logistic-
Normal model to heterogeneous mark–recapture data. The Bayesian method yields a full
probability distribution for the number of animals, rather than point estimates with asso-
ciated errors, communicating both extent and shape of the associated uncertainty. Model
fitting is accomplished using computer-intensive Markov chain Monte Carlo (MCMC) sim-
ulation methods (Brooks 1998).

MCMC methods that involve sampling from, rather than maximizing, the likelihood
have had a liberating effect on Bayesian data analysis, greatly increasing the range of models
that can be fitted in a Bayesian framework for a wide range of applications (Gilks, Richard-
son, and Spiegelhalter 1996). However, Fienberg et al. (1999) noted that mark–recapture
models with individual effects present a problem to the application of standard MCMC al-
gorithms, because the changing number of unobserved individuals leads naturally to arrays
of variable dimension whereas standard software requires a constant dimensional parame-
ter space (Brooks 1998). We show how to overcome this problem by data augmentation to
specify the correct likelihood using arrays of fixed dimension. The decision of how many
unobserved individuals to include is thus cast into a model selection problem. The fixed
dimensional parameter space allows model fitting through standard MCMC approaches
(Casella and George 1992; Carlin and Chib 1995), which can be implemented using the
freely available WinBUGS software (Lunn, Thomas, Best, and Spiegelhalter 2000). We
demonstrate this method through application to a published mark–recapture dataset for
snowshoe hares (Lepus americanus), reported by Cormack (1989). These data were also
used by Coull and Agresti (1999) when evaluating the performance of the logistic-normal
Rasch model in a maximum likelihood framework, and therefore allows a comparison to
the performance of our Bayesian approach.

2. MARK–RECAPTURE DATA MATRIX

Mark–recapture data can be summarized as a matrix X with elements xij taking the
values 1 or 0 depending whether or not individual i is “captured” in the jth sample. These
“captures” may involve any type of detection or sighting by which individuals can be re-
liably distinguished. It is assumed that the duration of the sampling is sufficiently short
that individuals are unlikely to enter or leave the population through births, deaths, and
permanent migration. The matrix X has its number of columns, J , fixed by the number of
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samples drawn from the population and its number of rows set by the number of observed
individuals, n. In the hare study, n = 68 different hares were captured over J = 6 consec-
utive trapping days. The numbers of times each individual was captured (i.e., the row-sums
of X) ranged from 1 to 6 (median = 2, mode 1) and the numbers of individuals captured
on each occasion (the column-sums of X) ranged from 16 to 32 (median = 25) (Cormack
1989). Clearly, there is scope for individuals to remain undetected in such mark–recapture
studies, and to accommodate this Fienberg et al. (1999) augmented X to include N − n

rows of zeros corresponding to the unobserved individuals in a population of size N .

3. MODEL STRUCTURE

The model we employ is based on the Rasch model from the field of educational
testing (Rasch 1960), which was introduced to the context of population estimation by
Darroch, Fienberg, Glonek, and Junker (1993) and Agresti (1994). This type of model has
previously been fitted to the snowshoe hare data, using maximum likelihood approaches
(Coull and Agresti 1999). The model is based on the assumption that, conditional on capture
probabilities pij , the observations xij constitute the outcome of independent Bernoulli trials.
The likelihood of the data matrix given by Fienberg et al. (1999) is

L(X) =
(

N

n

) N∏
i=1

J∏
j=1

p
xij

ij

(
1 − pij

)1−xij
. (3.1)

We only observe data for n rows of the underlying data matrix, where n is the number of
individuals that are captured at least once. The remaining N − n rows are all unobserved
vectors of 0’s. The aim of the modeling is to estimate how many rows of 0’s there should be,
and therefore estimate N . The n detected individuals are seen as representing a subset from
the population of size N , and therefore N needs to be included as an unknown parameter in
the likelihood. Specifically, the model includes a factorial term to specify the

(
N
n

)
possible

number of ways of partitioning N individuals in the population into n that are detected and
N − n that are not.

The Rasch model that we employ assumes that the probabilities of capture vary both
across survey occasions and among individuals. These two effects are likely to be partic-
ularly important in mark–recapture studies where it is not possible to completely control
the coverage of the capture samples, due to individual heterogeneity and perhaps variation
in the capture effort across surveys. For the hare example, the requirement for both survey
and individual effects is indicated by the variability in the numbers of times each individ-
ual was captured and in the numbers of individuals captured on each occasion. Our model
construction follows that of Coull and Agresti (1999), based on a logit-linear model for
observation probabilities

log{pij/(1 − pij)} = µ + θi + αj (3.2)

for an overall constant µ, occasion effects αj , j = 1 . . . J , and individual effects θi, i =
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1 . . . N . Combining this model to that for the recapture data gives the following likelihood:

L
(
X | N, µ, α, θ

)(
N

n

)
·

N∏
i=1

J∏
j=1

[
exp(µ + θi + αj)

1 + exp(µ + θi + αj)

]xij
[

1
1 + exp(µ + θi + αj)

]1−xij

.

(3.3)

This likelihood has four sets of parameters: µ,α,θ and N . To allow for unobserved
animals, the individual effects, θi, have to be modeled as random effects, which we assume
are drawn from a Normal distribution with zero mean and variance σ2

θ. We also use a
Normal random effects model for the occasion effects, αj , with variance σ2

α, although it
is also possible to treat these effects as fixed. We follow Fienberg et al. (1999) in adopting
a Bayesian framework for this model, where the overall mean level of capture probability,
µ, was assigned a vague Normal prior centred at zero with large variance (=10). To allow
nonzero effects to emerge, the variance hyperparameters for the occasion and individual
effects, σ2

α and σ2
θ, respectively, were assigned separate inverse gamma prior densities of

the form Gamma−1(a, b), where a = v0/2 and b = v0σ
2
0/2. These Gamma densities have

an average, σ2
0, and the degree of strength of the prior beliefs is contained in the degrees

of freedom parameter v0. This conveniently allowed us to vary the degrees of freedom to
assess sensitivity of the abundance estimate to these prior assumptions. To ensure that the
prior for N is flat across the probable range of values, we adopted a truncated Uniform prior,
in which the prior distribution for N is proportional to 1, with the lower bound set to be
the number of individuals observed (n), and the upper bound is based on prior knowledge
of the population (e.g., Fienberg et al. 1999). As an alternative, a truncated Jeffreys’ prior
(Jeffreys 1946) was obtained simply by formulating both priors for N as proportional to
N−c, with the constant c set to 1 for the Jeffreys prior (hence N was proportional to 1/N )
and 0 for the uniform prior (hence N was proportional to 1).

Inference from this Bayesian model can be based on the joint posterior distribution, and
inference on single parameters, such as population size, can then be obtained by integrating
this joint distribution over all other parameters to obtain the marginal posterior distribution
of interest (Gelman, Carlin, Stern, and Rubin 1995). However, for the current model, a closed
form analysis of the posterior distribution is intractable (Fienberg et al. 1999) and we use
MCMC sampling to accomplish this integration by simulation (Brooks 1998). There are a
variety of MCMC methods for sampling from posterior densities. The most straightforward
of these is the Gibbs sampler (Casella and George 1992), where values are sequentially
generated directly from the full conditional distribution of each parameter given the current
value of the other parameters and the data. However, this model presents a problem in the
direct application of this kind of MCMC sampling (Fienberg et al. 1999). This difficulty
arises because the dimension of the parameter vector of individual effects θ = (θ1, . . . θN )
is determined by another unknown parameter: the number of individuals, N . As a result,
although we can condition on µ and α when estimating N , we cannot condition on θ. This
prohibits the use of conventional Gibbs sampling from full conditional distributions, which
requires a constant dimensional parameter space.
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4. ABUNDANCE ESTIMATION THROUGH MODEL SELECTION

We have overcome the problem of variable dimensionality by fixing the maximum
possible number, M , of unseen individuals. Corresponding changes of fixed dimension
must be made, both to the matrix of capture histories (augmenting the observed data by M

rows of zeros: xij = 0, for i = n + 1, . . . , n + M and j = 1, . . . , J) and to the vector
of individual effects (augmenting the values relating to observed individuals by M values:
θn+1, . . . , θn+M ).

We cast the decision of how many, n0, of the M potentially undetected individuals to
include into a model selection problem, with n0 functioning as a model indicator variable,
indicating which capture history data xij , i = n + 1, . . . , n + n0 should actively augment
the data xij , i = 1, . . . , n, from observed individuals. This formulation is equivalent to the
product space approach of Carlin and Chib (1995), with a product space being defined in
reference to the pool of all M possible individual parameters for undetected individuals with
individual specific parameters θi = (θn+1, . . . , θn+M ), and with the additional indexing
variable n0. Each value for n0 can then be viewed as a candidate model, which can be
described in terms of how many of this pool of M possible individual-specific parameters
are included in the model.

Specification of a particular value of n0 implies no contribution to the likelihood should
be made by rows iof the data matrix with i > n+n0. This can be achieved trivially by treating
the additional elements of the data matrix as arising from independent Bernoulli trials with
pij = 0 so that xij = 0 with probability one for i = n+n0+1, . . . , n+M and j = 1, . . . , J .
Similarly, although the parent distribution for θi, i = n + 1, . . . , n + n0, is the same as for
θi, i = 1, . . . , n, this should not be the parent distribution for θi, i = n+n0 +1, . . . , n+M .

Instead, the approach of Carlin and Chib (1995) for sampling from a product space can
be implemented, involving updating moves of two alternate types: sampling from the model
indicator, n0, and then updating the value of the model parameters conditional on the value
of the indicator. Under this scheme, individual effects θi, i = 1, . . . , n + n0, are sampled
from their posterior conditional on their inclusion in the model, whereas individual effects
θi i = n + n0 + 1, . . . , M are sampled from their “pseudo-priors.” These pseudo-priors
can be thought of as “linking densities,” functioning to maintain fixed dimensionality of
the product space over all candidate models and their parameters (Carlin and Chib 1995).
Gibbs sampling of this kind has been applied to other Bayesian variable selection problems
(e.g. Geweke 1996; Kuo and Mallick 1998).

The choice of pseudo-priors is essential for efficient operation of this scheme, and to
ensure regular between-model moves. Carlin and Chib (1995) suggested the use of pseudo-
priors that are close to the conditional posterior if the parameter were in the model to
facilitate switches between models during MCMC sampling. To achieve this, we have found
it effective to conduct a pilot run to estimate the posterior distribution of θn+1. Provided n0 >

1 throughout the pilot run, the sampled values of θn+1 can be used to provide a good estimate
of the posterior distribution of the individual-specific parameter for unobserved individuals.
To show that choice of the pseudo-priors affects only the computational efficiency, we
performed separate sampling runs from the joint model space with different degrees of
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variance inflation for the pseudo-priors used in each run.
Prior information in the model indicator n0 can be specified through the prior distri-

bution on N , as these parameters are linked through the logical relationship n0 = N − n.
This formulation has the effect of truncating the prior for N , making it a discrete random
variable with support over the interval between n and n + M . This is an intuitively logical
set-up, because the posterior distribution for N is bounded to be greater than the number,
n, of individuals that were actually observed. Additionally, the upper bound, n+M , can be
specified based on prior information, to avoid an unrealistically large number of candidate
models in the product space, and facilitate faster and more efficient computation.

5. APPLICATION TO REAL MARK–RECAPTURE DATA

Based on the summary data presented by Cormack (1989), a binary capture history
was compiled for each of the n = 68 different snowshoe hares that were captured over
J = 6 consecutive trapping days, consisting of a row of 1’s and 0’s to indicate whether or
not the individual was captured on a particular occasion. This served as the data to which
we fit the Rasch using the WinBUGS software (Lunn et al. 2000). Initially, the occasion
and individual effect hyperparameters, σ2

α and σ2
θ, respectively, were each assigned Gamma

densities with prior averages of σ2
0α

and σ2
0θ

= 1, but with prior degrees of freedom v0α and
v0θ

= 1 to specify relatively uninformative priors. We performed a goodness-of-fit check
of this model for these observed data using a posterior predictive approach (e.g., Gelman,
Meng, and Stern 1996). Replicates were drawn from the posterior predictive distribution
p(X rep | X, µ, θ, α), which was predicted based on posterior estimates of model parameters,
and a discrepancy measure D was then calculated for both the predicted X rep and observed
data X:

D(X rep) = ΣΣ
{
xrep

ij × log(pij) + (1 − xrep
ij ) × log(1 − pij)

}
D(X) = ΣΣ

{
xij × log

(
pij

)
+ (1 − xij) × log(1 − pij)

}
. (5.1)

There was good agreement between the posterior predictive distribution of D(X rep) and the
posterior distribution of D(X) (Figure 1). The exceeding tail area probability, called the
posterior predictive p value, was estimated as the proportion of draws above the diagonal line
in Figure 1 and took the value .58. Values close to .5 indicate that the realized discrepancy
of the data is consistent with what one might expect from replications under the model
(Gelman et al. 1996).

The WinBUGS implementation of the mark–recapture model with unobserved individ-
uals was straightforward to set up with the exception of the factorial term

(
N
n

)
in Equation

(3.1), which is not included in the likelihood implied by declaring the capture histories, xij ,
as the outcome of independent Bernoulli trials. Instead, the factorial term was introduced
by another data augmentation step, this time of observing n successes out of N independent
trials each with probability δ = 10−6. Choice of δ is arbitrary, so long as it is sufficiently
small that the implied likelihood contribution is effectively proportional to

(
N
n

)
over the

likely variation of N .
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Figure 1. Scatterplot of 10,000 draws from the predictive posterior distribution of the discrepancy measure for
the predicted data D(Xrep) against the discrepancy measure for the observed data D(X). The posterior predictive
p value is the proportion (in this case .58) of draws above the diagonal line.

We began by choosing M = 200 for the number of candidate individuals that were
not captured, generating a discrete Uniform prior distribution for population size N that
was restricted to be between n = 68 at the low bound and M + n = 268 at the upper
bound. Although this value for M was based on knowledge of the interval estimate of Coull
and Agresti (1999), it could have been obtained interactively from short MCMC runs to
ensure that n + M was greater than the upper bound of the estimated posterior distribution
for N , but not so great that it led to unnecessarily slow and inefficient computation. We
also conducted a pilot run to monitor an individual effect, θi, for an undetected individual
(i = n + 1) that was always included in the model (1 < n0 throughout the pilot run). The
results of the pilot run were then used to estimate a Normally distributed pseudo-prior for
individual effects when individuals were not chosen to be in the model (estimated mean of
−.84 and standard deviation of .90).

To assess the sensitivity and efficiency of abundance estimation to the choice of pseudo-
prior for the individual effects, we performed three separate full runs of the model with
different pseudo-prior distributions. Specifically, the mean value remained as estimated
from the pilot run, but the standard deviation of the pseudo-prior from the pilot run was
inflated by a fixed constant G, for G = .5, 1, and 2. For this comparison of pseudo-priors,
we kept a fixed specification of the real priors for the variance hyperparameters σ2

α and σ2
θ,

respectively, for individual effects included in the model, by maintaining prior averages of
σ2

0α
and σ2

0θ
= 1, and prior degrees of freedom v0α and v0θ

= 1. For each pseudo-prior
setup, we employed MCMC sampling to simultaneously simulate three separate sequences
of values from the posterior distributions of interest. After a number of “burn-in” iterations
required for chain convergence, we stored the outcome of each iteration until a sample
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Table 1. Estimates of model parameters using three different pseudo-prior distributions for the individ-
ual effects, θi, associated with undetected individuals that are not included in the model (i > n
+ n0). The mean and standard deviation of the pseudo-prior distribution were based on initial
pilot runs, and the standard deviation was then inflated by a fixed constant, G = .5, 1, or 2.
The median (95% probability interval) are given for each marginal posterior distribution.

G µ σ2
α σ2

θ n0 N

.5 −1.37 .33 1.12 28 96
(−2.90, −0.56) (.11, 1.50) (.30, 3.89) (9, 106) (77, 174)

1 −1.39 .33 1.16 29 97
(−2.96, −.56) (.11, 1.50) (.31, 3.85) (9, 109) (77, 177)

2 −1.40 .33 1.18 29 97
(−2.95, −.56) (.11, 1.53) (.32, 3.99) (9, 109) (77, 177)

of 30,000 realizations was formed (10,000 for each chain). The length of the burn-in was
assessed using the method of Gelman and Rubin (1992), as modified by Brooks and Gelman
(1998), which is based on summary statistics comparing the variances within and between
three different simulated sequences. Convergence was achieved within 10,000 iterations of
each chain for all three pseudo-priors.

Changes in the precision of the pseudo-priors had little effect on posterior inference
about parameters of the Rasch model (Table 1). For all three pseudo-prior setups, the
overall level of the capture probability on the logit scale, µ, corresponded to a mean capture
probability of around .20, and the variance of the occasion effects (σ2

α) was markedly
lower than that of the individual effects (σ2

θ), highlighting the importance of including
individual effects in the model. In absolute terms, this difference can be compared by
taking µ = −1.39, and adding separately Gaussian random variables with variances either
.33 or 1.16 to the linear predictor. This induces coefficients of variation of .42 and .69 in
the implied distributions of observation probabilities, respectively. The posterior estimates
for the number of unseen individuals, and accordingly, the total population size, were also
extremely similar for the three pseudo-prior distributions.

Although changes in the precision of the pseudo-priors had little effect on posterior
inference about parameters, they did markedly affect the efficiency of sampling from the
posterior, as noted by Carlin and Chib (1995). Specifically, the autocorrelation between
sampled values of N increased with departures from the unmodified pseudo-prior (G = 1)
constructed from the pilot run, indicating that moves between models (different values of
n0) were less frequent. For an example, the lag =10 autocorrelation was .77 at G = 1, but
.84 at G = 2 and .82 at G = .5. Hence more iterations would be needed when using these
modified pseudo-priors to adequately sample from the posterior distribution. This supports
the suggestion of Carlin and Chib (1995) that pseudo-priors for omitted individual effects
should be chosen to closely match to the conditional posterior if the parameter were in the
model, to ensure efficient operation of this MCMC model selection approach to abundance
estimation.

To assess the sensitivity of the model selection procedure to the upper bound of the
possible number of individuals, we performed separate full runs of the model with M =
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200, 400, and 600 potentially unseen individuals, using discrete Uniform prior distribu-
tions for population size N that were restricted to be between n = 68 at the lower bound
and n + M = 268, 468, and 668 at the upper bound, respectively. For consistency, we
adopted the unmodified (G = 1) pseudo-prior for all three runs, and the same Gamma
priors for the variance hyperparameters σ2

α and σ2
θ. The different numbers of candidate

unseen individuals that were sampled in each scenario was reflected by the speed of the

Figure 2. Marginal posterior probability distributions for snowshoe hare population size, N, estimated using a
range of prior distributions, illustrated using dashed lines. Prior distributions were formulated using M = 200,
400, and 600 potentially unseen individuals, and the prior densities for N were therefore distributed between the
number of observed individuals n = 68 at the lower bound and n + M = 268, 468, and 668 at the upper bound,
respectively. Both discrete Uniform and Jeffreys priors were adopted by formulating the prior for N as proportional
to N−c, with c = 1 for the Jeffreys prior and c = 0 for the Uniform prior. For clarity, distributions are plotted
over the parameter space defined by the M = 200 prior.
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Table 2. Summary statistics for the posterior distribution for population size, N, estimated for a variety
of prior forms for the variance hyperparameters for the occasion and individual effects, σ2

α
and σ2

θ , respectively. In each case, we maintained values of σ2
0α

and σ2
0θ

= 1 as the average
of these variance terms, but the degree of strength of the prior beliefs was changed by using
values of .5, 1, and 5 for the degrees of freedom parameters v0α and v0θ

. The marginal
posterior distributions for N are summarized by the most frequently sampled value (mode)
in the MCMC sample, along with the 2.5, 50 (median) and 97.5 percentile values of the
distribution.

v0α v0θ
Mode 2.5% Median 97.5%

1 .5 86 76 95 186
1 1 88 77 97 177
1 5 88 78 96 165
.5 1 88 77 97 176
5 1 86 77 96 171

MCMC sampling. The 30,000 iterations (10,000 for each of the three chains) were ac-
complished in approximately 2,000 seconds for M = 200, 4,000 seconds for M = 400,
and 6,000 seconds for M = 600. However, the estimated posterior distributions were very
similar under the three scenarios, despite the widely differing prior ranges for N (Figure 2).
The mode of the posterior distribution was 88 (median =97) in all three cases, and the 95%
posterior probability intervals were virtually identical at [77, 177], [77, 175], and [77, 176]
for M = 200, 400, and 600, respectively. Note that the posterior distributions were highly
skewed to the right, with asymmetrical 95% intervals about the median. This lack of effect
of the prior range on posterior inference is unsurprising given that the addition to the range
of the prior for N is unsupported by the data. However, the time penalty of the wider priors
suggests it is worth making preliminary runs to establish the minimum range necessary for
the prior for N .

We also explored how inference about N might be sensitive to the specifications of
the forms assumed for the real priors. For consistency, we kept fixed values for the pseudo-
priors with G = 1, but in turn varied the priors assigned to the population size, N , and
the variance of occasion and individual effects, σ2

θ and σ2
α, respectively. First, keeping the

prior for σ2
θ and σ2

α fixed as before (σ2
0α

, σ2
0θ

= 1, v0α , v0θ
= 1), we adopted a truncated

Jeffreys prior for N (Jeffreys 1946) in place of the truncated uniform prior. With M = 200
there was very little change in the median of the posterior distribution when changing the
prior from the truncated uniform (median = 97) to the Jeffreys prior (median = 94), but
the 95% posterior interval reduced from [77, 177] to [76, 142]. This shrinking of the upper
tail of the posterior distribution is not surprising, as the Jeffreys prior is an asymmetrical
distribution that concentrates greater mass on the lower values in the truncated range. As
with the uniform prior before, there was little effect of increasing the prior range using
M = 400 and M = 600 with the Jeffreys prior (Figure 2).

Finally, keeping the Uniform prior for N with M = 200, we changed the priors for
σ2

θ and σ2
α by sequentially adopting a range of values for the prior degrees of freedom,

v0α , v0θ
= 5, 1, .5, to reflect informative priors centred on 1, relatively uninformative and

very uninformative formulations, respectively (Table 2). Changes in the precision of the
prior for either of these variance hyperparameters had relatively little effect on the posterior
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distribution of N . There was very little change in the mode or median of the sampled
values, but informative priors centered on 1 generally produced a smaller upper tail in the
posterior sample, whereas the upper bound was slightly increased as the prior became less
informative. This effect appears greater for changes in the prior for the variance of the
individual effects compared to that for the occasion effects.

6. DISCUSSION

Bayesian statistical inference has been suggested as a suitable approach for wildlife
mark–recapture studies (Pollock 1991) and is increasingly being advocated for analyzing
and communicating uncertainty in ecological data analysis (Ellison 1996; Wade 2000). We
have shown how a Bayesian hierarchical formulation of the Rasch model (e.g., Fienberg et
al. 1999) can be used to make sensible inferences about population size in animal mark–
recapture where capture probabilities vary over time and individuals. Inference based on
Bayesian posterior probability distributions facilitates communication of both the extent and
shape of the associated uncertainty. In our example, estimates from the posterior distribution
for population size were similar to the maximum likelihood estimate of 92 produced from
the same data by Coull and Agresti (1999). When using a uniform prior distribution for N ,
the Bayesian posterior distribution had 95% intervals (77–177) that were larger than these
authors’ profile likelihood confidence intervals (75–154). As with the likelihood confidence
intervals, this marginal distribution was positively skewed indicating greater uncertainty
about the upper bound of population size than the lower bound. Such skewness is intuitively
expected in mark–recapture studies, given that the number of individuals that are actually
captured forms a lower bound on population size. This skewness also emphasizes the danger
of conventional approaches to interval estimation that rely on asymptotic normality.

Fortunately, modern computational techniques have broadened the range of methodol-
ogy used in mark–recapture modeling (Buckland et al. 2000). Interval estimation through
the use of profile likelihood (e.g., Cormack 1992), bootstrap resampling (e.g., Buckland and
Garthwaite 1991) and Bayesian methods for calculation of the posterior distribution (e.g.,
Smith 1991) now offer more realistic and flexible approaches for inference. The recent
development of MCMC approaches for approximation of posterior distributions offers a
useful addition to this toolkit, enabling Bayesian inference from relatively complex models
with intractable posterior distributions. For example, George and Robert (1992), Lee and
Chen (1998), Fienberg et al. (1999), and King and Brooks (2001), have all applied MCMC
methods in a mark–recapture context. We have followed these authors in using the Bayesian
MCMC approach for fitting the Rasch model to mark–recapture data.

The successful application of MCMC techniques for simulating solutions from the
Bayesian Rasch model is not automatic. Fienberg et al. (1999) noted that direct imple-
mentation of MCMC is problematic in this model, since the dimension of the vector of
individual effects depends on the unknown number of individuals in the population. To
overcome this, we constructed a constant parameter dimension by introducing a fixed num-
ber of undetected individuals, with associated augmented data and unknown individual
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effects. Each possible number of undetected individuals could then be viewed as a dif-
ferent model within a product model space, and we adopted the Gibbs sampling MCMC
approach of Carlin and Chib (1995) for sampling from this product model space to esti-
mate the probability of each candidate population size. Fienberg et al. (1999) suggested
that this type of abundance estimation through model selection could be achieved using the
“reversible jump” MCMC (RJMCMC) approach of Green (1995) for sampling over sep-
arately defined alternative models with variable dimensions. However, the product model
space approach that we have adopted has the advantage that it can be sampled using stan-
dard MCMC methods, such as the Gibbs sampler (George and Casella 1992), which can
be implemented using the freely available WinBUGS software (code can be downloaded
from http://www.abdn.ac.uk/zoology/lighthouse/research/JABES 2005.shtml). This soft-
ware package offers the advantage that modifications and extensions can easily be made
to the model, with a minimum of programming time (Gilks, Thomas, and Spiegelhalter
1994). For example, this utility could be exploited for fitting different forms for the varia-
tion in individual effects (e.g., Pledger 2000) or for including dependence between capture
occasions through hierarchical extensions to the model (e.g., Fienberg et al. 1999).

This ease of implementation does not come without a price. In particular, when a
large number of candidate models for unobserved individuals is introduced into the product
model space, this approach can become computationally expensive, requiring many hours
or even days to complete a satisfactory number of iterations. This is because the parameters
of every model must be updated at every iteration, regardless of whether they are in the
currently chosen model or not. This is not the case with the RJMCMC approach of Green
(1995), where only the parameters of the chosen model are updated at a given iteration.
However, there is currently no stand-alone software available to implement RJMCMC,
which therefore requires substantially greater investment in initial programming time. We
suggest that the run time for our approach should be minimized by careful specification
of the candidate number of undetected individuals, based on pilot runs and available prior
information on the upper bound of possible abundance.
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